Instructions - Use **black** ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided there may be more space than you need. - You must show all your working. - Diagrams are **NOT** accurately drawn, unless otherwise indicated. - Calculators may not be used. # Information - The total mark for this paper is 80 - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. #### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P48147A @2017 Pearson Education Ltd. 6/6/6/6/6/7/7/ ## Answer ALL questions. # Write your answers in the spaces provided. ## You must write down all the stages in your working. 1 The scatter graph shows the maximum temperature and the number of hours of sunshine in fourteen British towns on one day. One of the points is an outlier. (a) Write down the coordinates of this point. (....lo., (9) Q01a (b) For all the other points write down the type of correlation. positive Q01b | On the same day, in another British town, the maximum temperature was 16.4°C. | | | |--|----|------| | (c) Estimate the number of hours of sunshine in this town on this day. | +6 | | | | | | | 12 · 9 hours | 2 | Q01c | | A weatherman says, | | | | "Temperatures are higher on days when there is more sunshine." | | | | (d) Does the scatter graph support what the weatherman says? Give a reason for your answer. | | | | The scatter graph supports the weatherman because | | | | the graph has a positive correlation. | 1 | Q01d | | (Total for Question 1 is 5 marks) 5 | | | | 2 Express 56 as the product of its prime factors. | 1 | Q02 | | 56
28 2
14 2
7 2 | | | | (Total for Question 2 is 2 marks) | | | | (Total for Question 2 is 2 marks) | | | | Turn over | | | **3** Work out 54.6 × 4.3 18 -100=0-18 3 Q03 | X | 4 | 0.3 | |-----|-----|------| | 50 | 200 | 15 | | 4 | 16 | 1.2 | | 0.6 | 2.4 | 0.18 | | | | | 200-65-2-4-1.2-0.18 234.78 (Total for Question 3 is 3 marks) 3 The area of square ABCD is 10 cm². Show that $$x^2 + 6x = 1$$ $$(3 + \infty)^2$$ $$(3+\infty)(3+\infty)$$ $$9+6\infty+\infty^{2}$$ $$\infty^{2}+6\infty+9=10$$ $$-9$$ $$\infty^{2}+6\infty=1$$ (Total for Question 4 is 3 marks) 5 m The weight of the metal is 1.5 kg per metre. Work out the total weight of the metal in the frame. $$\sqrt{169} = 13$$ 47 × 1.5 ¥ 20 3.5 70.5 70 · 5 kg (Total for Question 5 is 5 marks) 5 The equation of the line L_1 is y = 3x - 2The equation of the line L_2 is 3y - 9x + 5 = 0 Show that these two lines are parallel. $$y = 3x - 2$$ $3y - 9x + 5 = 0$ $3y - 9x = -5$ $3y = 9x - 5$ $3y = 3x - 5$ $3y = 3x - 5$ y = Mx + C 2 y = 3x - 2y = 3x - 5/3 As they both have the same m value (gradient) they must be parallel (Total for Question 6 is 2 marks) 2 Jules buys a washing machine. Q09 20% VAT is added to the price of the washing machine. Jules then has to pay a total of £600 What is the price of the washing machine with no VAT added? £ 500 (Total for Question 9 is 2 marks) 2 10 Show that (x+1)(x+2)(x+3) can be written in the form $ax^3 + bx^2 + cx + d$ where a, b, c and d are positive integers. Q10 $$(x + 1)(x + 2)$$ $$x^{2} + 2x + x + 2$$ $$x^{2} + 3x + 2$$ $$x^{2} + 3x + 2(x + 3)$$ $$x^{3} + 3x^{2} + 3x^{2} + 9x + 2x + 6$$ $$x^{3} + 6x^{2} + 11x + 6$$ $$ax^{3}+6x^{2}+11x+6$$ $ax^{2}+cx+d$ $$a = 1$$ $b = 6$ $c = 11$ $d = 6$ all positive (Total for Question 10 is 3 marks) 11 The graph of y = f(x) is drawn on the grid. (a) Write down the coordinates of the turning point of the graph. | (, | - 3)
(11 V | | Q11a | |----|----------------|--|------| |----|----------------|--|------| And the state of t (b) Write down estimates for the roots of f(x) = 0 | 2.75 ,0. | 75 | | | |----------|-------|---|------| | , | (1) 0 | 0 | Q118 | (c) Use the graph to find an estimate for f(1.5) (Total for Question 11 is 3 marks) 2 2 12 (a) Find the value of $81^{-\frac{1}{2}}$ Q12a (b) Find the value of $\left(\frac{64}{125}\right)^{\frac{2}{3}}$ | 31 | 64 | | |----|-----|---| | -1 | 64 | | | | | - | | V | 125 | | | | 100 | | $$\frac{4}{5} = \frac{16}{25}$$ - Q12b - (Total for Question 12 is 4 marks 3 - 13 The table shows a set of values for x and y. | х | 1 | 2 | 3 | 4 | |---|---|----------------|---|----------------| | у | 9 | $2\frac{1}{4}$ | 1 | $\frac{9}{16}$ | - y is inversely proportional to the square of x. - (a) Find an equation for y in terms of x. Find an equation for y in terms of x. $$y = x = 3$$ $$y = x = 9$$ $$y = x = 9$$ - Q13a (b) Find the positive value of x when y = 16 - Q13b 14 White shapes and black shapes are used in a game. Some of the shapes are circles. 10 total Shapes All the other shapes are squares. The ratio of the number of white shapes to the number of black shapes is 3:7 = 10 The ratio of the number of white circles to the number of white squares is 4:5 The ratio of the number of black circles to the number of black squares is 2:5 Work out what fraction of all the shapes are circles. Q14 3w : 76 9 white shapes 4:5 bc:bs 2:5 7 black shapes (Total for Question 14 is 4 marks) 0 0 $\frac{98}{h} = \frac{1}{3} \text{ Tt} \times 26.396 \times 98 \quad 0.15$ $h = \frac{1}{3} \text{ Tt} \times 26.396 \times 98 \quad 0.15$ 0.09 0.09 | 15 | A cone has a volume of 98 | cm³. | |----|------------------------------|-------| | | The radius of the cone is 5. | 13 cm | Volume of cone = $\frac{1}{3}\pi r^2 h$ (a) Work out an estimate for the height of the cone. | 98= | 1/2 Tr2 h | |-------|---------------| | 98 = | 13TX5.13 h | | 7 7 8 | = 3 TC x 5.13 | | × | 5 | | 0.03 | |------|------|---------|-------| | 5 | 25 | 0.50 | 0.15 | | 010 | 0.50 | D.00001 | 0.003 | | 0.03 | 0.15 | 0.003 | 0.09 | | | | | | (Total for Question 15 is 4 marks) + 25 26 + 26 0.15 0.006 = 1 Q15a John uses a calculator to work out the height of the cone to 2 decimal places. (b) Will your estimate be more than John's answer or less than John's answer? Give reasons for your answer. John's answer will be more than the estimate because he rounded to 2 dp (10 V 0 Q15b 16 n is an integer greater than 1 $$(n-2)(n-2)$$ □ **✓** □ Q16 Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number. $n^2 - 2n - 2n + 2$ $n^2 - 4n + 2 - n^2 - 2n$ = -6n + 2 -6n+2 J-362) it will always be even. (Total for Question 16 is 4 marks) 1 7 of the counters are green. 2 of the counters are blue. Ria takes at random two counters from the bag. Work out the probability that Ria takes one counter of each colour. You must show your working. Bluc Q17 6/8 Green $$B6 \frac{16}{72} \times \frac{63}{72} = \frac{79}{72}$$ $$GB \frac{56}{72} \times \frac{18}{72} = \frac{74}{72}$$ $$2\frac{9}{72}$$ 7/4 Green (Total for Question 17 is 4 marks) 18 ABCD is a rhombus. The coordinates of A are (5,11)The equation of the diagonal DB is $y = \frac{1}{2}x + 6$ Find an equation of the diagonal AC. (Total for Question 18 is 4 marks) OABC is a parallelogram. $$\overrightarrow{OA} = \mathbf{a}$$ and $\overrightarrow{OC} = \mathbf{c}$ X is the midpoint of the line AC. *OCD* is a straight line so that OC: CD = k: 1 Given that $$\overrightarrow{XD} = 3\mathbf{c} - \frac{1}{2}\mathbf{a}$$ find the value of k. $k = \sqrt{2}$ (Total for Question 19 is 4 marks) 2 2 20 Solve algebraically the simultaneous equations $$(13 + 3x)(13 + 34x)$$ $$\frac{39}{39} = \frac{x^2 + y^2 = 25}{y - 3x = 13} = \frac{169 + 39x + 9x^2}{y - 3x = 13} + 3x + 3x + 169$$ $$x^2 + y^2 = 25 \qquad y = 13 + 3y$$ $$169$$ $$\frac{3}{25} + 9x^{2} + 78x + 169 = 25$$ $$-25 - 25$$ $$10x^{2} + 79x + 144 = 0$$ $$10\left[x^{2} + \frac{78}{10}x + \frac{144}{10}\right] = 0$$ $$\frac{3.5}{40.4}$$ $$\frac{40.4}{3.9}$$ $$10\left[\left(x+3.4\right)^{2}+\frac{144}{10}\right]=0$$ $$10\left(x+3.9\right)^{2} = \frac{144}{10}$$ $$10\left(x+3.9\right) = \sqrt{-\frac{144}{10}}$$ $$10 \left[x = -3.9 \pm \sqrt{-144} \right]$$ $$\frac{10x}{x} = -39 \pm \sqrt{-144}$$ $$\frac{10x}{x} = -3.9 \pm \sqrt{-144}$$ (Total for Question 20 is 5 marks)³ AB = CD. Angle ABC = angle BCD. Prove that AC = BD. AB = CD Angle ABC = Angle BCD BC is parallel to AD Triangle ACD = Triangle ABD - AB = CD - ## Opposites angles around a point are equal - They both share line AD (Total for Question 21 is 4 marks) $\frac{1}{2}$ 22 The diagram shows a hexagon ABCDEF. ABEF and CBED are congruent parallelograms where AB = BC = x cm. P is the point on AF and Q is the point on CD such that BP = BQ = 10 cm. Given that angle $ABC = 30^{\circ}$, prove that $$\cos PBQ = 1 - \frac{(2 - \sqrt{3})}{200}x^2$$ (Total for Question 22 is 5 marks) 0 TOTAL FOR PAPER IS 80 MARKS , मा कता भियाणाजा अग्रा सुरुताय त BLANK PAGE