Write your name here

$\text { surname } H_{A M M}$	Other names ANNA								
Pearson Edexcel Level 1 / Level 2 GCSE (9-1)	Centre Number					Candidate Number			
	1	0	6	5	8	2	4	5	\bigcirc
Mathematics Paper 2 (Calculator) Higher Tier									
Thursday 8 June 2017 - Morning Time: 1 hour 30 minutes									
You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.									

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The table shows the probabilities that a biased dice will land on 2 , on 3 , on 4 , on 5 and on 6

Neymar rolls the biased dice 200 times.
Work out an estimate for the total number of times the dice will land on 1 or on 3

$$
\begin{aligned}
& \text { No. 1 }=1-(0.17+0.18+0.09+0.15+0.1)=0.31 \\
& \text { No. } 3=0.18 \times 200=36=\frac{36}{200} \\
& \text { No. } 1=0.31 \times 200=62 \frac{62}{200} \\
& \frac{36}{200}+\frac{62}{200}=\frac{49}{100}=0.49 \approx 50 \% \text { charce } \\
& \text { N } \\
& 36+6 L=98 \frac{49 \times 2=98}{200}
\end{aligned}
$$

2 On Saturday, some adults and some children were in a theatre. afc
The ratio of the number of adults to the number of children was $5: 2$
Each person had a seat in the Circle or had a seat in the Stalls.
$\frac{3}{4}$ of the children had seats in the Stalls.
117 children had seats in the Circle.
There are exactly 2600 seats in the theatre.
On this Saturday, were there people on more than 60% of the seats?
You must show how you get your answer.

CHILDREN

STALLS CIRCLE
$\frac{3}{4} \therefore \frac{1}{4}$ in circle ${ }^{117}=\frac{1}{4}$ of children

$$
117 \times 3=\frac{3}{4} \text { of children }=351 \text { in stalls }
$$

$251+117=368$ children in total.

$$
\begin{aligned}
\text { Adults: } & \text { children } \\
5 & : \\
& 2 \\
& 368
\end{aligned} \rightarrow \div 2=184=1 \text { part }
$$

$$
184 \times 5=920 \text { adults. }
$$

Total people:

$$
368+920=1288
$$

$$
\begin{aligned}
\frac{1288}{2600}= & 0.49353 \ldots \\
& 49.53 \ldots \% \\
& \\
& \\
\text { lower than } 60 \% & \text { No teats willed with people } 60 \%
\end{aligned}
$$

3 The diagram shows a prism with a cross section in the shape of a trapezium.

On the centimetre grid below, draw the front elevation and the side elevation of the prism.
Use a scale of 2 cm to 1 m .

111	11													

4 Sly drove 56 km from Liverpool to Manchester.
He then drove 61 km from Manchester to Sheffield.
Olly's average speed from Liverpool to Manchester was $70 \mathrm{~km} / \mathrm{h}$.
Olly took 75 minutes to drive from Manchester to Sheffield.
(a) Work out Olly's average speed for his total drive from Liverpool to Sheffield.

$$
\begin{aligned}
& \begin{array}{rlrl}
L \rightarrow M & =56 \mathrm{~km} & & M \rightarrow S \\
& =701 \mathrm{~km} / \mathrm{h} & x & =7 \mathrm{~km} / \mathrm{h} \mathrm{~s}
\end{array} \quad S=\frac{d}{t} \\
& =? \text { min } \\
& =75 \mathrm{~min} t \\
& 81.3-70=11.3 \div 2=5.65 \text { n } \\
& 70+5.65=75.65
\end{aligned}
$$

Janie drove from Barnsley to York.
Janie's average speed from Barnsley to Leeds was $80 \mathrm{~km} / \mathrm{h}$.
Her average speed from Leeds to York was $60 \mathrm{~km} / \mathrm{h}$.
Janie says that the average speed from Barnsley to York can be found by working out the mean of $80 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$.
(b) If Janie is correct, what does this tell you about the two parts of Janie's journey?

She drove consistantly \qquad

6 Anil wants to invest $£ 25000$ for 3 years in a bank.

Which bank will give Anil the most interest at the end of 3 years?
You must show all your working.

PERSONAL

$25000 \times 1.02^{3}=む 26530.2$

more than $k 26527.03$
\therefore the personal bank will give her most interest after 3 years.

SECURE

$25000 \times 1.043=t 26075$
$25000 \times 1.009^{2}=£ 25452.025$
$25000-$ ans $\cong 452.025$
$t 26075+t 452.025=$
$\star 26527.025$

7 A number, n, is rounded to 2 decimal places.
The result is 4.76
Using inequalities, write down the error interval for n.
0.005
$4.76+0.005=4.765 U B$
4. $76-0.005=4.755 \angle B$

$$
4.755 \leqslant n<4.765
$$

8 The cumulative frequency graph shows some information about the heights, in cm , of 60 students.

Work out an estimate for the number of these students with a height greater than 160 cm .

9 The diagram shows triangle \mathbf{A} drawn on a grid.
\checkmark

Kyle reflects triangle \mathbf{A} in the x-axis to get triangle \mathbf{B}.
He then reflects triangle \mathbf{B} in the line $y=x$ to get triangle \mathbf{C}.
Amy reflects triangle \mathbf{A} in the line $y=x$ to get triangle \mathbf{D}.
She is then going to reflect triangle \mathbf{D} in the x-axis to get triangle \mathbf{E}.
Amy says that triangle \mathbf{E} should be in the same position as triangle \mathbf{C}.
Is Amy correct?
You must show how you get your answer.
No Amy is not correct.

10 The table shows some information about eight planets.

Planet	Distance from Earth (km)	Mass (kg)
Earth	0	5.97×10^{24}
Jupiter	6.29×10^{8}	1.898×10^{27}
Mars	7.83×10^{7}	6.42×10^{23}
Mercury	9.17×10^{7}	3.302×10^{23}
Neptune	4.35×10^{9}	1.024×10^{26}
Saturn	1.28×10^{9}	5.68×10^{26}
Uranus	2.72×10^{9}	8.683×10^{25}
Venus	4.14×10^{7}	4.869×10^{24}

(a) Write down the name of the planet with the greatest mass.

JUPITER
(1) 1

1 1 Q10a
(b) Find the difference between the mass of Venus and the mass of Mercury.

$$
4.869 \times 10^{24}-3.302 \times 10^{23}=4.5388 \times 10^{24}
$$

4. 5388×10^{24}
(1) 1 kg

Nishat says that Neptune is over a hundred times further away from Earth than Venus is.
(c) Is Nishat right?

You must show how you get your answer.

414 is smaller than 433
\therefore Nishat is right.
(Total for Question 10 is $\mathbf{4}$ marks)

Please find the annotations at the end of the script.

11 Solve $\frac{3 x-2}{4}-\frac{2 x+5}{3}=\frac{1-x}{6}$

$$
\frac{3 x-2}{4}-\frac{2 x+5}{3}=\frac{1-x}{6}
$$

$$
\frac{3(3 x-2)}{12}-\frac{4(2 x+5)}{12}
$$

$$
\frac{9 x-63}{12}-\frac{8 x+20}{12}
$$

$$
\frac{x-26}{12}=\frac{1-x}{6}
$$

$$
\frac{6 x-156}{72}=1-x
$$

$$
6 x-156=72-72 x
$$

$$
78 x=228
$$

$$
x=2.923076
$$

$$
x=2.92(2 d p)
$$

12 There are 30 students in Mr Lear's class.
16 of the students are boys.
Two students from the class are chosen at random.
Mr Lear draws this probability tree diagram for this information.

(a) Write down one thing that is wrong with the probabilities in the probability tree diagram. he didn't decrease the total when choosing the second student. It should be out of 29

Owen and Wasim play for the school football team.
The probability that Owen will score a goal in the next match is 0.4
The probability that Wasim will score a goal in the next match is 0.25
Mr Slater says,
"The probability that both boys will score a goal in the next match is $0.4+0.25$ "
(b) Is Mr Slater right?

Give a reason for your answer.
No because the events don't exclude poach other. They could both score a goal so it should be 0.4×0.25

13 The histogram shows some information about the ages of the 134 members of a sports cluh

20% of the members of the sports club who are over 50 years of age are female.
Work out an estimate for the number of female members who are over 50 years of age.

$$
\begin{aligned}
50-60=10 \times 1.4 & =\frac{14 \text { members }}{} \\
60-90=30 \times 0.7 & =\frac{21 \text { members }}{35 \text { members in total over so }}
\end{aligned}
$$

$$
35 \times 20 \%=7 \text { female }
$$

13
Turn over -

14 Here are some graphs.

In the table below, match each equation with the letter of its graph.

Equation	Graph
$y=\sin x$	D
$y=x^{3}+4 x$	E
$y=2^{x}$	A
$y=\frac{4}{x}$	G

(Total for Question 14 is 3 marks)

14
$15 A, B, C$ and D are four points on the circumference of a circle.

$A E C$ and $B E D$ are straight lines.
Prove that triangle $A B E$ and triangle $D C E$ are similar.
You must give reasons for each stage of your working.

- Angles formed m the same arc are equal $\therefore A B D$ and $A C D$ are equal, and $C D B$ and $\angle A B$ are equal and $A \in D$ are equal, and $\angle D B$ and $C A B$ are equal
- Triangles $A B E$ and $D C E$ two angles have 2 angles that are equal.' Angles in a hi angle $=180^{\circ} \therefore 180-a-b=c^{\circ}$. and this $3^{\text {rd }}$ angle are therefore equal.
, If triangles have all the same angles, they are mathematically similar.

16 Using algebra, prove that $0.1 \dot{3} \dot{6} \times 0 . \dot{2}$ is equal in value to $\frac{1}{33}$

$$
\begin{aligned}
& x=0.136 \\
& 1000 x=136.36 \ldots \\
& 10 x=1.36 \ldots \\
& 990 x=135 \\
& x=\frac{135}{990} \\
& x \times y=\frac{1}{33} \\
& \frac{135}{990} \times \frac{2}{9}=\frac{1}{33}
\end{aligned}
$$

$$
y=0.2
$$

$$
10 y=2.2 \ldots
$$

$$
\begin{aligned}
9 y & =2 \\
y & =\frac{2}{9}
\end{aligned}
$$

$O N Q$ is a sector of a circle with centre O and radius 11 cm .
A is the point on $O N$ and B is the point on $O Q$ such that $A O B$
is an equilateral triangle of side 7 cm .
Calculate the area of the shaded region as a percentage of the area of the sector $O N Q$. Give your answer correct to 1 decimal place.

$$
\begin{aligned}
& O B=11-7=4 \mathrm{~cm} \\
& \text { TRIANgLE AREA = } \\
& \text { \$ } \frac{1}{2} a b \\
& \frac{1}{2} \times 7 \times 7=24.5 \mathrm{~cm}^{2} \\
& \text { angles in equilateral trig. }=60^{\circ} \therefore Q O A=60^{\circ} \\
& \frac{60}{360} \times \pi \times \|^{2}=63.35545185 \mathrm{~cm}^{2}=A R E A \text { SECTOR. } \\
& \begin{array}{r}
60.35545185 \mathrm{~cm}^{2}=\text { AREA SECTOR } \\
\text { ans }-24.5=38.85545185 \mathrm{~cm}^{2}=\text { AREA SHADEs } \\
\text { REGION }
\end{array} \\
& 38.85545185 \\
& 63.35545185 \quad \times 100=61.329 \ldots \% \\
& \approx 61.3 \%
\end{aligned}
$$

$1816^{\frac{1}{5}} \times 2^{x}=8^{\frac{3}{4}}$
Work out the exact value of x.

$$
\begin{aligned}
16^{\frac{1}{5}} & \times 2^{x}=8^{\frac{3}{4}}-16 \frac{1}{5} \\
2^{x} & =3.015727333 \\
x & =1.507863667 .2 \\
& \approx 1.51\left(2 d_{p}\right)
\end{aligned}
$$

$192-\frac{x+2}{x-3}-\frac{x-6}{x+3}$ can be written as a single fraction in the form $\frac{a x+b}{x^{2}-9}$ where a and b are integers.

Work out the value of a and the value of b.
$2-\frac{x+2}{x-3}-\frac{x-6}{x+3}$
$2-\frac{x+2(x+3)}{(x-3)(x+3)}-\frac{x-6(x-3)}{(x-3)(x+3)}$
$2-\frac{x^{2}+3 x+2 x+6}{x^{2}-9}-\frac{x^{2}-3 x-6 x+18}{x^{2}-9}$
$2-\frac{5 x+6}{x^{2}-9}-\frac{-9 x+18}{x^{2}+9}$
$2-\frac{-4 x+24}{x^{2}-9}$

20 The diagram shows part of the graph of $y=x^{2}-2 x+3$

(a) By drawing a suitable straight line, use your graph to find estimates for the solutions of $x^{2}-3 x-1=0$

$$
x=0 \text { or } x=2
$$

P is the point on the graph of $y=x^{2}-2 x+3$ where $x=2$
(b) Calculate an estimate for the gradient of the graph at the point P.

$$
\begin{aligned}
& y=m x+c \\
& y=m \times 2+3 \\
& -3=2 m \\
& \frac{-3}{2}=m
\end{aligned}
$$

$$
-\frac{3}{2}
$$

(Total for Question 20 is 5 marks | $\boxed{0}$ | 0 |
| :--- | :--- |

21 The diagram shows 3 identical circles inside a rectangle.
Each circle touches the other two circles and the sides of the rectangle, as shown in the diagram.

The radius of each circle is 24 mm .
Work out the area of the rectangle.
Give your answer correct to 3 significant figures.

LENGTH
$(2 \times 24) \times 2=96 \mathrm{~mm}$

LID TH
$24+24=48 \mathrm{~mm}$

+ overlap (x)

22 Here are the first five terms of a sequence.

4	11	22	37	56

Find an expression, in terms of n, for the nth term of this sequence.

23 L is the circle with equation $x^{2}+y^{2}=4$
$P\left(\frac{3}{2}, \frac{\sqrt{7}}{2}\right)$ is a point on \mathbf{L}.
Find an equation of the tangent to \mathbf{L} at the point P.

$$
\text { RADIUS }=\sqrt{4}=2
$$

(Total for Question 23 is 3 marks) 0

M1 correct method for AE
A0 misread of 8.1 for 8 so inaccurate answer.

Q10c
MO NO evidence of multiply by 100 or Neptune being divided by Venus.
A0 as no comparable values found to enable a conclusion to be made.

Q15
C2 2 pairs of angles identified as being equal. Thus deduced that all 3 angles are the same so that triangles are similar. We can isw the two other angles AED and CEB. C 0 as no valid reasons given.

